(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, 1).


The TRS R consists of the following rules:

fst(0, Z) → nil
fst(s, cons(Y)) → cons(Y)
from(X) → cons(X)
add(0, X) → X
add(s, Y) → s
len(nil) → 0
len(cons(X)) → s

Rewrite Strategy: INNERMOST

(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4]
transitions:
00() → 0
nil0() → 0
s0() → 0
cons0(0) → 0
fst0(0, 0) → 1
from0(0) → 2
add0(0, 0) → 3
len0(0) → 4
nil1() → 1
cons1(0) → 1
cons1(0) → 2
s1() → 3
01() → 4
s1() → 4
0 → 3

(2) BOUNDS(1, n^1)

(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

fst(0, z0) → nil
fst(s, cons(z0)) → cons(z0)
from(z0) → cons(z0)
add(0, z0) → z0
add(s, z0) → s
len(nil) → 0
len(cons(z0)) → s
Tuples:

FST(0, z0) → c
FST(s, cons(z0)) → c1
FROM(z0) → c2
ADD(0, z0) → c3
ADD(s, z0) → c4
LEN(nil) → c5
LEN(cons(z0)) → c6
S tuples:

FST(0, z0) → c
FST(s, cons(z0)) → c1
FROM(z0) → c2
ADD(0, z0) → c3
ADD(s, z0) → c4
LEN(nil) → c5
LEN(cons(z0)) → c6
K tuples:none
Defined Rule Symbols:

fst, from, add, len

Defined Pair Symbols:

FST, FROM, ADD, LEN

Compound Symbols:

c, c1, c2, c3, c4, c5, c6

(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing nodes:

FST(0, z0) → c
LEN(nil) → c5
ADD(0, z0) → c3
FST(s, cons(z0)) → c1
FROM(z0) → c2
LEN(cons(z0)) → c6
ADD(s, z0) → c4

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

fst(0, z0) → nil
fst(s, cons(z0)) → cons(z0)
from(z0) → cons(z0)
add(0, z0) → z0
add(s, z0) → s
len(nil) → 0
len(cons(z0)) → s
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

fst, from, add, len

Defined Pair Symbols:none

Compound Symbols:none

(7) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(8) BOUNDS(1, 1)